“拼一代”的Bruker质谱和它的PASEF

Bruker公司开发的捕获离子迁移率谱(trapped ion mobility spectrometry, TIMS)结合高分辨率飞行时间质谱(time-of-flight, TOF)的技术催生了timsTOF系列质谱系统,自2018商品化以来广泛应用于蛋白质组学领域,让这位在核磁谱学领域的“富二代”强势攻入生命科学质谱,成了新领域的“拼一代”。如今,Bruker质谱正以每年更新一款的速度实现快速的产品迭代(笔者注:据网络,用户可以以后期“升级”的方式实现旧换新),并通过频繁的收购(如2020年收购蛋白质组搜索引擎IP2、2022年收购色谱配件PepSep、2023年收购单细胞蛋白质组分析方案PhenomeX)、投资(如2023年实现对泛蛋白质组分析方案Biognosys的主要控股)、合作(如与IonOpticks的OEM合作、与国内几乎所有中大规模的蛋白质组科研服务公司的“战略”合作)等动作,实现其在蛋白质组分析上中下游全领域的渗透。

Bruker质谱能成功,与PASEF方法的建立有果因关系。PASEF全称平行累积-连续碎片化(Parallel Accumulation-Serial Fragmentation),是一种根据tims独特结构而开发的离子迁移和富集技术,可以实现对飞入质谱系统的多肽离子的高效利用,达到了分辨率和灵敏度的双重提高(下图展示了一种初代tims的结构(a)、及其对应的PASEF实现方式(b))。

Figure 1.  Schematics showing the ion path of the timsTOF Pro mass spectrometer. (a) Ions enter the mass spectrometer (blue wave line) and the dual TIMS ion mobility ion trap. After leaving the ion mobility trap, the ions are selected in the quadrupole (Q1) before passing into the collision cell, which can fragment peptides along the peptide bond. Finally, the ions are analyzed in the time of flight (TOF). (b) The function of the dual TIMS ion mobility trap is shown. The first TIMS tunnel can store and accumulate ions while ions are eluted one by one from the second TIMS tunnel by decreasing the electric field. When all ions from TIMS2 are eluted, the accumulated ions from the TIMS1 are transferred into the TIMS2 for analysis. This setup ensures that no ions are lost during the process.

来自卢森堡的研究者们日前在Expert Review of Proteomics上公开了他们关于PASEF方法的综述,汇总了截至投稿(2024年7月)的十一种基于PASEF开发出的质谱采集方法。论文链接:https://www.tandfonline.com/doi/full/10.1080/14789450.2024.2413092。论文对PASEF的本身技术更迭、对应的质谱方法种类、与重要的应用场景都做了漂亮的介绍,且文字并不冗长,非常推荐读者们赏读并继往开来;笔者在这里不做发挥,仅将11种方法列举于表格(见下表)。为避免与原文不对应,不对表格内容做翻译。

PASEF Method

Applications

Advantages

Limitations

Data Analysis Tools

DDA-PASEF

Discovery;Quantification at the MS1 level;Spectral library generation

Data completeness;Stochasticity of the DDA principle

AlphaTIMS,Mascot,MaxQuant,MS Fragger,ProteoScape,PEAKS XPro,Skyline,SpectroMine

caps-PASEF

Cross-linking mass spectrometry

Reduced selection of mono-linked peptides leads;Increased identification of cross-linked peptides;More effective in preventing the loss of cross-linked peptides in comparison to charge state-based filters

Non-linked and mono-linked peptides still present;Specialized software needed

XlinkXFragmentLabMeroX

Thunder-DDA-PASEF

Immunopeptidomics, specifically small peptides

Increased likelihood of fragmenting low-abundant peptides;Better separation of co-eluting peptides

Optimized for HLA-I, but not HLA-II peptides

MaxQuant,MS Fragger,PEAKS XPro

diaPASEF

Discovery, Quantifications at the MS2 level

Overcoming undersampling compared to DDA-PASEF

Limitations are the same as for DIA

AlphaTIMS,DIA-NN,MaxQuant,MS Fragger,Mobi-DIK in OpenSWATH,ProteoScape,Skyline,SpectroMine,Spectronaut

Thin-diaPASEF

Deep proteome profiling

More sensitive to low-abundant peptides

Covers a smaller region of precursor ions;Longer cycle time;Decreased throughput

DIA-NN,ProteoScape,Spectronaut

slice-PASEF

Discovery, low amounts

Increased identifications on precursor and protein group level;More precisely quantified peptides;Boosted peptide signals

Increased cycle time for multiple-frame approaches

DIA-NN, v 1.8.2 and v 1.9.1

synchro-PASEF

Discovery

Short cycle times;Higher fragment intensities

Method design needs access for field programmable gate array of the Q1

AlphaTIMSDIA-NN, v 1.9.1

midiaPASEF

Discovery, generation;Spectral library generation;De novo sequencing

Increased fragment ion sensitivity;Increased duty cycle;Characteristic MIDIA fingerprints help identifying low-abundant peptides;Increased spectral purity with low interferences or unassigned peaks;Increased mass accuracy and ion statistics;Independent on reconstruction slicing pattern compared to synchro-PASEF

Method design needs access for field programmable gate array of the Q1

MIDIAID pipeline

speedy-PASEF

Cohort analysis;Routine analysis

Fast chromatographic methods;High throughput;Decreased sample carry-over between runs;Accelerated column equilibration;Sharper peaks;Higher peak capacity

High sample amount needed (2000 – 3000 ng)

DIA-NN

prm-PASEF

Targeted proteomics

Removes interferences;Increased sensitivity;Possibility of absolute quantification;Possibility of highly multiplexing the PRM

Ion mobilities have to be taken into account

Skyline,Spectrodive

g-dia-PASEF

Targeted proteomics, Discovery

Fast measurement;Absolute quantification for selected peptides;Fewer optimization steps need than for prm-PASEF;Higher sensitivity than diaPASEF

Less sensitive than prm-PASEF

DIA-NN,Skyline,Spectronaut